Copenhagen, Denmark
Onsite/Online

ESTRO 2022

Session Item

Monday
May 09
16:45 - 17:45
Auditorium 12
Dosimetry & treatment planning
James Iddenden, United Kingdom;
Liselotte ten Asbroek-Zwolsman, The Netherlands
3500
Proffered Papers
RTT
17:35 - 17:45
Dosimetric validation of a hybrid DIR algorithm for MR-Linac dose accumulation
Victor Malkov, Canada
OC-0953

Abstract

Dosimetric validation of a hybrid DIR algorithm for MR-Linac dose accumulation
Authors:

Victor Malkov1, Jeff D. Winter1,2, Vickie Kong1,2, Winnie Li1, Jennifer Dang1, Inmaculada Navarro1, Jerusha Padayachee1,2, Peter Chung1,2, Tony Tadic1,2

1Princess Margaret Cancer Centre, Radiation Medicine Program, Toronto, Canada; 2University of Toronto, Department of Radiation Oncology, Toronto, Canada

Show Affiliations
Purpose or Objective

The MR-linac adapts treatment plans to accommodate inter-fraction anatomical changesPatients will experience further intra-fraction motion which will impact the final delivered dose. We aim to assess the performance of a hybrid intensity- and structure-based DIR algorithm for inter- and intra-fraction prostate MR images using geometric and dosimetric assessments.

Material and Methods

We generated manual contours of the bladder, rectum, and CTV on 3D T2 MR images of 25 patients with prostate cancer treated with 30Gy/5 SBRTIn addition to the reference MR scan, three MR scans were obtained for each patient per fraction: session start (adapt), end of plan adaptation (verify), and during beam delivery (beam-on). We contoured 400 MR images. We recomputed adapdoses on the verify and beam-on MR scans. We performed DIRs for each patient between the reference MR and all fraction imagesas well as within fraction adapt-to-verify (A-to-V) and adapt-to -beam-on (A-to-B)We use a hybrid DIR algorithm with two strategies: image intensity alone, and image intensity with controlling structures. The latter uses Chamfer matching to optimize the registration of the bladder, rectum, and CTV ROIs. For a subset of patients, we included controlling point-of-interest (POIs) in the DIR. We automatically generate the POIs based on an optimized mesh representation of the bladder adapted across all MR images. We compare manual and mapped contours using max distance to agreement (mDTA), dice similarity coefficient (DSC), and difference of DVHs (dDVH).

Results

In Fig. 1 we compare DSC between manual and mapped structures for the A-to-V and A-to-B DIRs using intensity-only and combined intensity-structure strategiesUse of the controlling ROIs improved the DSC and reduced variance. For the A-to-intensity-only DIR, mDTA was 0.34±0.13 cm (CTV), 2.1±1.2 cm (bladder), and 0.9±0.6 cm (rectum). For the intensity-structure DIR, the values were 0.14±0.06 cm, 0.25±0.13 cmand 0.3±0.6 cm, respectively. In Fig. 2 we present the dDVH between the manual and A-to-B mapped contours. For 14 patients, use of the controlling ROIs notably reduces dose differences across the entire dDVH. For 9 patients, the combined intensity-structure DIR resulted in worse ROI alignment (mDTA of 0.22±0.11 cm, 2.6±2.8 cm, 0.8±0.7 cm for A-to-B). By using controlling POIs, we were able to improve these DIRs (mDTA of 0.20±0.09 cm0.27±0.14 cm, 0.7±0.7 cm). The DIR between the reference and beam-on images using the intensity-only DIR produced a DSC of 0.89±0.04, 0.77±0.16, 0.83±0.07 and a difference in dose metrics of 59±125 cGy (CTV D98), 2±115 cGy (bladder D5cc), and -38±114 cGy (rectum D1cc).



Conclusion

We demonstrate that the hybrid DIR algorithm can incur errors in contour propagation which will impact application to dose warping and accumulationControlling ROIs and POIs improve the DIR and consequentially require ROI segmentation on registered images. This motivates implementation of robust automated contouring for dose accumulation work.